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ABSTRACT

This paper introduces a novel mixture of experts model, the

Mixture of Hidden Markov Model Experts (MHMME). This

model is designed to perform context-based classification of

samples that are variable length sequences. The contexts are

determined by the gates and the classifiers are determined by

the experts. The gates and the experts are learned simultane-

ously using a single probabilistic model. Experimental results

on landmine dataset show that MHMME significantly outper-

forms the HMM-based and ME-based models.

Index Terms— Mixture of experts, hidden Markov mod-

els, ME, HMM, landmine detection, metal detector, WEMI.

1. INTRODUCTION

Finding contexts from data can significantly increase the

classification rates when classes contain multiple interlaced

subclasses whose characteristic are dependent on the con-

text. However, finding context and classifier models si-

multaneously is very difficult if the observed data consists

of sequences. One such example is in landmine detection.

Landmines appear in many sizes and shapes and are roughly

categorized into four groups according to their metallic con-

tent and intended targets as high metal anti-tank (HMAT),

high metal anti-personnel (HMAP), low metal anti-tank

(LMAT), and low metal anti-personnel (LMAP). However,

these groups mostly overlap, and the signals collected from

these mines can be significantly affected by changes in tem-

perature, humidity, and soil conditions. Therefore, the con-

texts are generally hard to define, they are often interlaced,

and do not have sharp boundaries. In such cases, we define a

context as a group of similar signatures.

In this study, a novel mixture of hidden Markov model

experts (MHMME) is developed that can both decompose se-

quential data into multiple contexts and learn expert classi-

fiers for each context. In this model, a gate of HMMs de-

fines the contexts and cooperates with a set of HMM experts

that provide multi-class classification. The MHMME model

is inspired from the mixture of experts (ME) model [1], and
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extends it to sequential (and time-series) data for classifica-

tion. Therefore, MHMME carries the advantages of the ME

model and also brings advantages that set it apart from the

other models, summarized as below:

• MHMME model provides a divide and conquer ap-

proach, is probabilistic, and has soft boundaries – all

of which support context learning. Unlike the tradi-

tional mixture models where the mixture coefficient is

a scalar, in MHMME the mixture coefficient (i.e. the

gate) depends on the input and helps define the contexts

that are unknown to the data modeler.

• The learning of the contexts and the classifiers is ac-

complished simultaneously, in one model. During

training, there is no hard clustering of data, which

means that the sequences can freely move between

contexts and classifiers.

• MHMME considers the temporal connections in time-

series data, and is suitable for high-dimensional se-

quential data of varying lengths due to the use of the

hidden Markov models (HMMs). In addition, HMMs

at the gate and the experts can be of different topologies

(number of states, observation symbols etc.).

In the ME literature, a number of models [2–6] were de-

scribed that extend the ME architecture to time-series data.

These models, however, are only applicable to regression, and

they use a multi-step-ahead prediction in which the last val-

ues of the time-series data are used as features in a neural

network. Such models cannot handle data of varying length

and the use of multilayer network-type approaches prevent

them from completely describing the temporal properties of a

time-series dataset. In contrast to these models, our study is

on classification and is suitable for varying length sequences.

2. MIXTURE OF HMM EXPERTS

For all the hidden Markov models, we define:

• W = number of states; M = number of symbols in the code-

book; T = length of observation sequence.

• I = number of experts; K = number of classes.

• V = {v1, ..., vM} the discrete set of observation symbols.

O = O1O2...OT denotes an observation sequence, where Ot
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is the observation at time t; Q = q1q2...qT is a fixed state se-

quence, where qt is the state at time t; S = {S1, S2, ..., SW }
are the states.

• λik = HMM model for the kth class at the ith expert such that

λik = {A(ik), B(ik)}. Also, ψi = ith is the HMM model at

the gate.

• The initial state distribution π = {πr}Wr=1, where πr =
P (q1 = Sr) is the probability of being in state r at time

t = 1.

• The state transition probability A = {{arj}Wr=1}Wj=1, where

arj = P (qt+1 = Sj |qt = Sr).
• The emission matrix B = {{bj(m)}Wj=1}Mm=1, where

bj(m) = P (vm at t|qt = j).

The MHMME architecture is illustrated in Fig. 1 where

the gate has I HMM models. Each branch of the gate is con-

nected to an expert, and an expert hasK HMMs, one for each

class. The gate partitions the set of all time-series data that

can serve as inputs to the HMMs, and defines the contexts

where the individual expert opinions are trustworthy. Experts

discriminate data in these partitions based on class labels. We

denote the HMM models at the gate with Ψ = {ψ}Ii=1, the

HMM models at the experts with Λi = {λik}Kk=1, and finally,

we denote the set of all the gate and expert parameters as

Θ = {Ψ,Λ}. Let the data be denoted by D = {O, Y } where

O = {O(n)}Nn=1 represents the input sequences, and Y =
{y(n)}Nn=1 represents the class coded true outputs of train-

ing data such that y(n) = [y
(n)
1 , ..y

(n)
k , ..y

(n)
K ], and y

(n)
k = 1 if

x(n) belongs to class k, and 0 otherwise. The gate and experts

make a decision following the complete data distribution

P (D,Z; Θ) =
∏
n

∏
i

(
g
(n)
i Pi(y

(n))
)z

(n)
i

where z
(n)
i is a latent variable, g

(n)
i = P (i|O(n),Ψi) is

Fig. 1. MHMME architecture with I experts forK classes. A

gate partitions the set of all sequential or time-series data that

can serve as inputs to the HMMs. Experts learn to discrimi-

nate the classes in these partitions.

the probability of selecting the ith expert given the sequence

O(n). Pi(y
(n)) is the probability that the ith expert has gen-

erated y(n) given O(n). The gate’s estimate is obtained by:

g
(n)
i =

exp f(O(n)|ψi)∑I
m=1 exp f(O

(n)|ψm)

where f(O(n)|ψi) is the Viterbi log-likelihood of observation

O(n) for an HMM model ψi. Similar to the gate, the HMMs

at the experts compute the Viterbi log-likelihood

f(O(n)|λik) = logPHMM (O(n), Q, λik)

where

PHMM (O,Q, λik) = π(ik)
q0

T−1∏
t=1

a(ik)qtqt+1

T∏
t=1

b(ik)qt (ot)

is the Viterbi likelihood. The output of expert i for class k is

ŷ
(n)
ik , computed as

ŷ
(n)
ik = exp f(O(n)|λik)/

K∑
r=1

exp f(O(n)|λir).

Therefore, in the E step, we find the expectations h
(n)
i of

the hidden variables and in the M step, we find the HMM

parameters that maximize the objective functions Qe and Qg:

ψ
(p+1)
i = argmax

ψi

Qg = argmax
ψi

N∑
n=1

I∑
i=1

h
(n)
i log g

(n)
i (1)

λ
(p+1)
ik = argmax

λik

Qe = argmax
λik

N∑
n=1

I∑
i=1

h
(n)
i logPi(y

(n))

(2)

To ensure that the estimated parameters satisfy the con-

straints arj ≥ 0,
∑W

j=1 arj = 1, bmj ≥ 0, and
∑M

m=1 bmj =
1, we map these parameters using log, and map them back

with softmax functions as in [7, 8]. Let p denote the iteration

number. The HMM parameters that maximize the objective

functions are found by gradient ascent updates as:

∼
a
(ik)

rj (p+ 1) =
∼
a
(ik)

rj (p) + ε
∂Qe(Λ(p))

∂
∼
a
(ik)

rj (p)
,

and
∼
b
(ik)

mj (p+ 1) =
∼
b
(ik)

mj (p) + ε
∂Qe(Λ(p))

∂
∼
b
(ik)

mj (p)

.

3. EXPERIMENTS ON LANDMINE DATA

For landmine detection we consider a dataset consisting of

mine and non-mine object data collected using a robotic sys-

tem with wide-band electromagnetic induction (WEMI) sen-

sors [9, 10]. The data were collected from a controlled envi-

ronment and was described in [11, 12]. The WEMI sensors
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collect complex responses in 21 frequencies between 330Hz

and 90, 030Hz which can be modelled as S(w) = A[I(w) +
iQ(w)] where w is the frequency, A is the magnitude, I(w)
is the real and Q(w) is the imaginary response of the com-

plex system. The term I(w) + iQ(w) describes the shape of

the response, and it can be represented by an Argand diagram

which is the plot of I(w) with respect to Q(w). The shape of

an Argand diagram is indicative of the type and distribution

of metal in a target, and mines of the same type show similar

Argand curves that are scaled replicas of each other depend-

ing on the depth. However, the features from the mines are

generally interlaced and it is difficult to appoint a model as

an expert to identify a particular subclass of mines [13, 14].

Therefore the MHMME model can find multiple models from

the data that represent each of these contexts, and do a better

classification than those ignoring the context.

The data was normalized between [0, 1] to eliminate the

variation in magnitude due to depth, and the Argand se-

quences were discretized to the 50 cluster centers found by

FCM clustering. The MHMME architecture was set to have

8 experts, which corresponds to 8 HMMs at the gate, and

2 HMMs at each expert. All the HMMs were set to have

3 states. To initialize the gate, 4 HMMs were learned from

class 1 (mines) and 4 HMMs were learned from class 2 (non-

mines) using Cl-HMM [15]. Then, all the training sequences

were tested with all the HMMs and those that received high

likelihoods were used to initialize an HMM for each expert

using Baum-Welch training. The sequences with the highest

probabilities at each gate represent the contexts defined by

the gate. These sequences are displayed in Fig. 2 where the

type of the mine or nonmine object is given in the y-axis.

For example, the first context is defined by the LMAT mines

that have a particular shape. Similarly, LMAT and HMAP

objects of a particular shape share the second context. For

classification results, we ran twenty experiments of 10-fold

cross-validation. The average classification rates are given in

Table 1. Each entry is described below.

• Cl-HMM: Sequences from each class are clustered into

4 using [15], and an HMM is learned for each cluster,

resulting in 8 HMMs. A test sequence is assigned to the

class whose HMM yields the highest log-likelihood.

• Gate: The first four HMMs are assumed to represent

the first class, and the next four HMMs are assumed to

represent the second class.

• Experts: Each expert HMM is used as a classifier.

• MHMME + SVM: For each sequence, the log-likelihoods

obtained from all the HMMs in the MHMME model

are concatenated to form a feature vector, which is then

used in training an rbsvm with σ = 1.

• PCA + ME: The real and the imaginary parts of the data

are combined to form a sequence of length 42. Then

PCA is applied and the dimensionality is reduced to

10. These feature vectors are used to train a standard

ME model.

• PCA + SVM: Similarly, the dimensionality is reduced

to 10. An rbsvm is trained with σ = 1.

• MCE-HMM: Minimum Classification Error HMM is a

discriminative learning method that minimizes the total

misclassification error [7,16]. The parameters of MCE-

HMM as they appear in [16] were set as follows: η = 1,

γ = 8, θ = 0, ε = 0.1.

Table 1. 10-fold classification rates on landmine data
Model Mean Standard Deviation

MHMME + SVM 0.83 0.04
MHMME 0.80 0.05

PCA + SVM 0.78 0.04

MCE-HMM 0.75 0.05

PCA + ME 0.73 0.05

Gate 0.71 0.05

Cl-HMM 0.70 0.02

Experts 0.61 0.02

4. CONCLUSION

In this study simultaneous learning of context and classifica-

tion has been addressed for sequential data, and the MHMME

model has been developed. With landmine data experiments,

it has been shown that the gates of MHMME partition the data

in a way that each gate gives higher weights to certain types

of sequences. Then, the experts classify these similar-looking

sequences into mine and non-mine decisions. With these ex-

periments, it has been shown that it is not just the gates or

the experts, but it is the combination of both that results in

good classification rates. In addition, MHMME significantly

outperforms the HMM-based and ME-based algorithms.
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